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The Heterogeneous Photocatalytic Oxidation of Hydrocarbons on Platinized

TiO 2 Powders.

Ikuichiro Izumi, Wendell W. Dunn, Keith 0. Wilbourn, Fu-Ren F. Fan, and

Allen J. Bard*

Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712

(ABSTRACT)

The photodecomposition of hydrocarbons in oxygen-containing solutions

at platinized TiO2 yields predominantly C02 as the reaction product, with

intermediate production of hydroxylated compounds. A mechanism for the

reaction based on photogeneration of hydroxyl radicals at the TiO 2 surface

is proposed.

(End of Abstract)
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Introduction

Recent investigations from this laboratory have described the applica-

tion of platinized titanium dioxide powders (Pt/TiO 2 ) to heterogeneous photo-

catalytic and photosynthetic processes, such as the photo-Kolbe reaction,

in which aliphatic mono-1 and di- 2 carboxylic acids are decomposed to give

the corresponding alkane as the main product, as well as other reactions3.

These investigations have clearly demonstrated the usefulness of Pt/TiO 2

in photoelectrochemical experiments and the potential for the accomplishing

reactions requiring highly oxidizing conditions. In previous works we

found that the decarboxylation of benzoic acid at Pt/TiO 2 involved the

preceding hydroxylation of the benzene ring to form hydroxylated benzoates as

reaction intermediates.2 However, the main product of this reaction was

CO2 , suggesting that photodecomposition of hydrocarbon intermediates was

possible. Thus in this paper we extend these studies to the photocatalyzed

decomposition of hydrocarbons at Pt/TiO 2 . Phenol is shown to be a reaction

intermediate for the photodecomposition of benzene, with the final product,

CO2. This unusual and efficient photocatalyzed breakdown of benzene at

room temperature to yield CO2 thus provides a possible pathway in the

decarboxylation mechanism proposed for the photooxidation of benzoic acid.
2

We also describe the photodecomposition of several aliphatic hydrocarbons,

in which alcohols have been detected as intermediates.

Experimental Section

Materials. Benzene [reagent grade, Matheson, Coleman and Bell (MCB)],

hexane (MCB, 99+ mol %), cyclohexane (spectrophotometric grade, MCB), heptane

(reagent grade, Eastman), nonane and decane (Fisher Certified), barium hydroxide

(reagent grade, MCB) and phenol (reagent grade, Fisher) were used without

further purification. Decanol, nonanol, heptanol, hexanol, and cyclohexanol

--
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(reagent grade, Eastman) were used as received for standards in GC-Mass

spectroscopic analysis. The kerosene was extracted repeatedly with distilled

water prior to illumination to simplify subsequent analysis of the aqueous

phase. All solvents and other chemicals were reagent or spectrophotometric

grade and were used without further purification. The platinized T1O 2

powders were prepared by photodecomposition of hexachloroplatinic acid onto

TiO 2 powders (reagent grade, MCB, 125-250 um) and contained 10 % platinum

by weight.
4

Apparatus. The irradiation source for the photodecomposition of

aliphatic hydrocarbons was an Atlas Weatherometer, Model 6000, equipped with

a 6000 W Xe lamp. The described experiments were performed at an unfocused

power output of 5000 Watts, which corresponds to a total radiant intensity

of u 35 mW/cm2 at the location of the reaction cell. The Xe lamp was

jacketed with a water cooling cell to remove infrared irradiation. A

constant reaction temperature was maintained with a large water bath fitted

with a coil for water cooling. A 2500 W Xe lamp (Model UF 30 KK, Christie

Electric Corp., Los Angeles, Calif.) operated at 1600 W, was used as the

light source for all preparative runs in the photodecomposition of benzene.

The reaction cell with a flat window for irradiation and the water bath

were both of Pyrex. A 450 W Xe lamp with Model 6242 power supply (Oriel

Corp., Stamford, Conn.) served in the photoelectrochemical measurements.

Mass or GC-Mass spectra of reaction gases were obtained with an automated

Gas Chromatograph/EI-Cl Mass Spectrometer System (Finnigan, Model 2000).

UV-visible spectra were recorded with a Cary Model 14 spectrophotometer.

Electrochemical experiments were performed using a PAR Model 173 Potentto-

stat (Princeton Applied Research, Princeton, NJ) and a PAR Model 173 Universal

Programmer.
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Product Analysis. (a) Aliphatic Hydrocarbons: In a typical experiment,

200 mg of the photocatalyst powder was suspended by magnetic stirring in a

two-phase system composed of 5 mL water and 5 mL of the hydrocarbon. The

reaction cell was maintained at 36 ± 1 °C. The sweep gas, N2 or 02, was

first passed through Ba(OH)2 to remove any traces of CO2 in the cylinder

gas and then into the reaction cell. The gas was then passed through a

large volume cell cooled at -56 °C to condense volatile organic chemicals,

and then into a Ba(OH)2 solution for determination of CO2 as precipitated

BaCO3 . Solar experiments were conducted in a Pyrex flask with a liquid

surface area of approximately 700 cm2 using 1.0 g of the photocatalyst.

The condensed volatile organic chemicals were analyzed by a GC-Mass spectro-

meter. For hydrocarbon analysis, the columns used were a 6 m capillary of

OVI and a 36 cm OVI column. Relative concentrations of trace impurities

were compared by integration of ion current peaks and calibrated with

standard samples. Investigation of the more polar constituents was performed

with a Carbowax column. Identification of intermediate products was based

on comparison of retention times and mass spectra of sample and standards.

A detection limit of 2 ppm (equivalent to - 12 PM) was established for

heptanol under these conditions.

The gas products not condensed at -56 °C were collected in a gas buret

and were analyzed by a mass or GC-Mass spectrometer.

(b) Fenton's Reagent Reaction of Heptane: 5 mL heptane suspended in

100 mL 0.64 M FeSO4 , was purged with N2 to remove Co2 . 5 mL H202 was added

while the system was swept with N . After 12 hours, an additional 3 mL of

H202 was added to ensure complete reaction. The evolved CO2 was precipitated

as BaCO3 from a saturated Ba(OH)2 solution.
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(c) Benzene: In a Pyrex cell, a stirred suspension of 100 mg of

Pt/TO 2 in an emulsion of 5 mL benzene and 20 mL distilled water held at

27 ± 1 0C was illuminated under oxygen with white light from a 2500 W Xe

lamp (operated at 1600 W). The gases produced during the irradiation were

collected in a mercury-containing gas volumetric apparatus, as reported

previously. After termination of photolysis, the mixture in the gas buret

was transfered to an evacuated gas sample cell which attached to the mass

spectrometer for gas analysis. The average rate of CO2 evolution was

determined gravimetrically in another preparative run. The reaction gases

were swept out of the reaction vessel with a stream of oxygen and were

bubbled through a saturated solution of Ba(OH)2 in 0.2 M sodium hydroxide.

The precipitated BaCO 3 was filtered off, washed with distilled water, dried

at 120 0C, and weighed. The colorless reaction mixture after filtering off

the photocatalyst powders was analyzed by UV-visible absorption.

Results

Photocatalytic Decomposition of Benzene on Platinized TiO 2 Powders.

Illumination of suspensions of platinized TiO 2 powders in aqueous benzene

mixtures in the presence of oxygen produced observable evolution of gaseous

CO2 . After illumination, the gaseous products were analyzed by mass spectro-

metry. The mass spectra [m/e (relative intensity)] consisted of signals

of CO2, 44 (44.9 %), 16 (11.5 %) with background signals due to 021 32 (100 %);

N2, 28 (28 %); benzene, 78 (12 %); and water, 18 (5 %). Thus the only significant

gaseous product of photooxidation of benzene in water was CO2. The yield of

CO2 determined gravimetrically in another series of experiments is shown in

Table I. The UV spectrum of the colorless reaction mixture showed absorption
a 0

maxima at 2390, 2720, and 2780 A with a shoulder at 2670 A. The product was

identified as phenol by comparing its UV spectrum with that of a standard
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phenol solution. The concentration of phenol given in Table I was determined

by UV spectroscopy. The results of some control experiments are also

summarized in Table I. As shown in experiment 4, the photodecomposition

of benzene requires the presence of catalyst. Platinized anatase has a

higher efficiency than plain anatase powder (see experiments 2 and 7). The

results shown in experiments 3 and 6 show that the presence of oxygen promotes

the photodecomposition of benzene. Particularly interesting, the addition of

water, compared to a system containing only benzene, promotes the photo-

decomposition of benzene (see experiments 2 and 5). As shown in experiments

1 and 2, substantial amounts of phenol were isolated as an intermediate product.

These results suggest that the photooxidation of benzene on platinized TiO 2

powders suspended in H20 probably proceeds via the hydroxylation of benzene

to form phenols as the intermediate.5'6 Moreover, the results are different

from those for the electrolysis of aqueous benzene solutions in which p-

benzoquinone is the predominant product.7 -9  No p-benzoquinone or p-hydro-

quinone were obtained in the present experiments.

Photocatalytic Decomposition of Aliphatic Hydrocarbons on Pt/TtO 2 Powders.

Illumination of a suspension of Pt/TiO 2 in aqueous aliphatic hydrocarbon

mixtures in the presence of oxygen also leads to the observable evolution

of CO2. The yields of CO2 , which was the only significant gaseous product

(not condensed at -56 *C), are shown in Table II.

Extensive analysis for intermediates revealed a detectable level of only

the alcohols (see Table II), except in the case of decane, where trace amounts

of 2-, 4-, and 5-decanone were Identified. The concentrations of lower

molecular weight hydrocarbon impurities remained essentially unchanged

before and after reaction, demonstrating that the cleavage of the alkanes does

not result in the formation of shorter-chain hycrocarbons.



7

The reduction in the rate of photocatalytic oxidation with increasing

molecular weight is coincident with an increase in the viscosity of the hydro-

carbons. An exception to this trend is cyclohexane; however, in this case

an emulsion of the three phases (photocatalyst powder, H20, and hydrocarbon)

occurs. Addition of an emulsifying agent, IGEPAL-560 (nonionic nonyl phenoxy

polyoxyethylene ethanol, GAF Corp.) to a suspension of decane was found to

increase the rate of CO2 production from 34.0 umole/hr to 75.0 Pmole/hr,

confirming that the enhanced rate for cyclohexane oxidation is probably

due to improved phase mixing.

The reaction between heptane and Fenton's reagent, which produces

hydroxyl radicals, also produced a considerable amount of CO2 (Table II).

Thi demonstrates the possibility that at least in the initial stages of

the photodecomposition process, the attack of -OH on hydrocarbons and inter-

mediates occurs.

Electrochemical and Photoelectrochemical Measurements. The photocatalytic

activities of suspended platinized anatase powders were correlated with the

behavior of TiO 2 single crystal electrodes in photoelectrochemical (PEC)

measurements as shown in Figure 1. The current-potential behavior of a

rutile single crystal electrode was examined in an aqueous solution containing

1 M NaClO4 as the supporting electrolyte. In the dark, only a very small anodic

current was observed on a T1O 2 electrode both in deoxygenated and in oxygen-

saturated solutions, with or without benzene. In oxygen-saturated solution,

however, the T1O 2 electrodes showed a reduction peak at -1.16 V vs. SCE

(curve 2); this peak can be attributed to the reduction of oxygen, since

it disappeared Wien the solution was thoroughly deoxygenated (curve 1).

These voltammetric curves were essentially unaffected by saturating the solution

with benzene (curves 5 and 6). Under illumination, an appreciable anodic

.,**.
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current was observed. The on-set photopotential, Von, was essentially un-

affected by the presence of oxygen or benzene, and was about -0.35 V vs. SCE

for all cases. The presence of oxygen did not change the magnitude of the

photocurrent, however, the presence of benzene caused a slight reduction

in the photocurrent (curves 7 and 8), probably due to the absorption of

some of the incident light by benzene and phenols generated. On the other

hand, proton reduction on a platinum electrode in the presence of benzene

occurred at potentials more negative than -0.4 V vs SCE (curve 9). However,

oxygen reduction on platinum occurred at potentials much more positive than

either the on-set photopotential or the reduction potential of oxygen on

TiO 2 (curve 10). Thus, the presence of platinum on the TiO 2 powder could

promote the photocatalytic activity of TiO 2 compared to TiO 2 alone. Also,

the photocatalytic activity of platinized T1O 2 powder would be substantially

enhanced by the presence of oxygen. These results at a rutile electrode

are thus qualitatively consistent with the powder results. The role of oxygen

in PEC and the accompanying photocatalytic reactions on TiO 2 have also been
10

demonstrated by Korsunovskii.

Discussion

In the presence of oxygen, several n-type semiconductor powders have

been shown to behave as photocatalysts and promote the oxidation of substrates,

Irradiation of a semiconductor with light of energy higher than the band gap

results in the creation of holes in the valence band and electrons in the

conduction band of the semiconductor. These charge carriers can recombine

or the holes can be scavenged by oxidizable species (for example, H20, 1H202, or

hydrocarbons (RH)), and electrons by reducible species (for example, 02 or H+ )

in the solution.



9

(TiO 2) + hv -be + h' (1)

H20 + h +  OH + H+  (2)
H + + e-- H - (3)

02 + e- -H' H02 (4)

HO2 + h*+ 'HO2  (5)

2-H02 -+02 + H202 ---. OH + OH- + 02

(Haber-Weiss reaction) (6)

RH + OH (or -HO2 ) -H-* ROH (7)

RH + h +h +
-RH---h RH++ (8)

The electrochemical and photoelectrochemical measurements suggest that

the reduction of H+ on Pt and the reduction of 02 on TiO 2 do not occur at

an appreciable rate at the potentials where significant anodic photocurrent

on TiO 2 is observed. However, the reduction of 02 on Pt occurs at these

potentials and this represents a viable half-reaction at the photocatalyst

particle. The role of the Pt for this reaction is thus to provide a site

for the more efficient utilization of the photogenerated electrons in the

reduction of 02 (e.g., eq. 4), in agreement with the finding that the

photooxidation of hydrocarbons in deoxygenated solutions does not occur

to an appreciable extent (Tables I and II). It is also possible that inter-

mediates formed during the reduction of 02 play an important role in the

oxidation process, as suggested by reactions (4) - (6). Recent experiments

involving spin trapping and electron spin resonance spectroscopic detection

of intermediates formed during irradiation of Pt/TiO 2 in aqueous solutions

have demonstrated the intermediacy of -OH and HO .17 The very slow rate of

CO2 production in pure benzene (see Exp. 5 in Table I), the lack of the inter-

mediates other than hydroxylated compounds, and the dependence of the CO2
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evolution rate on the degree of phase mixing (Table II) suggest that the

photogenerated holes are scavenged by water (eq. (2)) rather than by hydro-

carbons (eq. (8)). These would form .OH or -HO2, and lead to the hydroxyla-

tion of hydrocarbons and eventually the complete oxidation. The mode of the

complete decomposition of the hydrocarbons has not been established. However,

the detection of phenol for the case of benzene and alcohols for the cases of

aliphatic hydrocarbons suggests that attack by .OH or HOi radicals is a likely

first step. The probable role of OH in these reactions is also supported

by the reaction of benzoic acid 2 and hydrocarbons with Fenton's reagent.

Thus the heterogeneous photooxidation of hydrocarbons in suspensions with

Pt/TiO 2 can be explained by a mechanism similar to that invoked for benzoic

acid, that is, the photooxidation proceeds via hydroxylated intermediates.

In both experiments it is of importance that hydrocarbons, which are unattacked

by most oxidizing agents, readily react with OH to form the final product CO2.

Since aliphatic hydrocarbons are themselves the products of the photo-Kolbe

reaction,1'2 their isolation in experiments involving the photodecomposition

of organic acids suggest that they are capable of escaping from the powder

surface. They then are swept from the reaction medium or react with -OH less

readily than the organic acid precursor. The destruction of hydrocarbons

by the photocatalytic reaction described here might be useful in the treat-

ment of waste streams or spills involving these materials.
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TABLE I. Photocatalytic Oxidation of Benzene on Platinized Anatase or Anatase

Powders.a
Time of 

CO Phenol
Illumination gegerated generated

Exp. No. Catalyst hrs Conditions mmol mmol

1 10% platinized anatase 4 illuminated, 0.13 0.10
02 saturated

2 10% platinlzed anatase 18.5 illuminated, 0.72 0.41
02 saturated

3 10% platinized anatase 40 illuminated, 1.85
02 saturated

4 none 72 illuminated, 0.03
02 saturated

b 0% platinized anatase 19 illuminated, 0.10

02

6 10% platinized anatase 43 illuminated, 0.15
deoxygenated

7 anatase 14 illuminated, 0.38
02 saturated

2i

aIf not otherwise mentioned, the solution was composed of 5 m. of benzene suspended

in 20 mL of H20. 100 mg of catalyst was employed.

b25 mL of benzene was used as the reacting solution.
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TABLE 11. Photocatalytic Oxidation of Aliphatic Hydrocarbons on Platinized Anatase

Podwers.

Time of Rate CO Rate of Alcohol
Weight Powder illumination production oxidation generated

Alkane (g) (hr) (iinol/hr) (ionol/hr) (Isnol)

Hexane 0.199 24 53.7 8.95

0.200 12 30.9 5.2 0.55

0.200 24 65.2 10.9

Cyclohexane 0.200 24 86.4 14.4 6x10-5

Heptane 0.200 48 60.4 8.6 0.650

0.201 24 61.1 8.7

0.201 24 45.3 6.5

a0.0  18 14.4 2.1

Nonane 0.200 24 41.4 4.6 0.220

0.200 46 65.6 7.3

b14024 54.6 6.1

Decane 0.200 67 14.8 1.5

0f.201 291 34.1 3.4 0.105

C 0.0  30 0.0 0.0

d02024 0.0 0.0

0206 75.0 7.5

Kerosene 0.200 72 17.2----

aPerformed with Fenton's Reagent, see exp. section.

bSoiar experiment.

cControl experiment, no catalyst added.

d N2 substituted for 02.

eEmulsifying agent added (0.25 ml IGOPAL - 560)
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FIGURE CAPTION

Fig. 1 Voltammetric curves at platinum and single crystal rutile electrodes

in solution containing 1 M NaClO4 as the supporting electrolyte.

Scan rate 100 mV/sec. Initial potential at the positive extremes.

Curve 1: In the dark; on Ti0 2; under N2; solution without con-

taining benzene.

Curve 2: In the dark; on Ti0 2; oxygen saturated; without benzene.

Curve 3: Under illumination; on Ti0 2; under N2; without benzene.

Curve 4: Under Illumination; on T10 2; under 02; without benzene.

Curve 5: In the dark; on T10 2; under N2; benzene saturated solution.

Curve 6: In the dark; on Ti0 2; oxygen and benzene saturated solution.

Curve 7: Under irradiation; on Ti0 2; under N2; benzene saturated

solution.

Curve 8: Under Irradiation; on T1O 2; oxygen and benzene saturated

solution.

Curve 9: On Pt; under N2; benzene saturated.

Curve 10: On Pt; oxygen and benzene saturated.
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